

TALK

Towards global and humancentered explanations for machine learning models

CARLA VIEIRA

DATA ENGINEER AND AI ETHICS RESEARCHER

Get to Know Me

I'm Carla, Data Engineer and Google Developer Expert in Machine Learning. Master student in Artificial Intelligence.

Fun facts:

- First time in the U.S.A
- First time speaking in an international conference
- First LeadDev Event

@carlaprvieira / carlavieira.dev

facebook.com

facebook

- -

0

instagram o

6.506 369 M 52

43%

how many episodes in season 2 of breaking bad?

ļ

Google Search

I'm Feeling Lucky

Potential Harms Caused by Al Systems

Leslie, D. (2019). Understanding artificial intelligence ethics and safety: A guide for the responsible design and implementation of AI systems in the public sector. The Alan Turing Institute.

BIAS AND DISCRIMINATION

DENIAL OF INDIVIDUAL AUTONOMYAND RIGHTS

NON-TRANSPARENT, UNEXPLAINABLE, OR UNJUSTIFIABLE OUTCOMES

INVASIONS OF PRIVACY

UNRELIABLE, UNSAFE, OR POOR-QUALITY OUTCOMES

What is bias in ML/AI?

Algorithmic bias is when a computer system reflects the implicit values of the humans who created it.

"Despite our aspirations for tech to be better than us, to be more objective than we are, the machines we create are a reflection of both our aspirations and our limitations."

Joy Buolamwini

How biasLet's explore how this happens in thebecome part ofML Lifecycle.Al systems?

Source: https://ai.googleblog.com/2019/12/fairness-indicators-scalable.html

Source: A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle

Data generation bias

"Datasets are like textbooks for your student to learn from. **Textbooks** have human authors, and so do datasets." (Cassie Kozyrkov)

Source: Dogs vs. Not-Dogs: How can a machine learning algorithm learn to tell the difference?

Historical bias

"Historical bias arises even if data is perfectly measured and sampled, if the world as it is or was leads to a model that produces harmful outcomes." (Suresh et. al. 2019)

BERNARD PAR

HIGH RISK

Two Petty Theft Arrests

VERNON PRATER

Prior Offenses 2 armed robberies, 1 attempted armed robbery

Subsequent Offenses 1 grand theft

BRISHA BORDEN

Prior Offenses 4 juvenile misdemeanors

Subsequent Offenses None

8

LOW RISK

HIGH RISK

Borden was rated high risk for future crime after she and a friend took a kid's bike and scooter that were sitting outside. She did not reoffend.

3

Representation bias

Representation bias occurs when the development sample underrepresents some part of the population.

US 32.1% GB 12.9% FR 4.3% US 45.4% GB 7.6%

Evaluation
bias

"The dominant values in ML are Performance, Generalization, (...) Efficiency, and Novelty. These are often portrayed as innate and purely technical." (Birhane et al., 2021)

Evaluation
bias

Recent research has proposed new metrics to evaluate the performance of the model considering notions of bias, fairness and discrimination.

Examples:

- measure the accuracy in the groups separately: a facial recognition model can have an accuracy of 80% on average, but 60% for black women and 90% for white men.
- another way is to assess disproportionate impacts, that is, to assess the balance between false positives for each group;

Deployment Bias

"Deployment bias arises when there is a mismatch between the problem a model is intended to solve and the way in which it is actually used."

Algorithms, the illusion of neutrality

behind the facade of "neutral" math.

Fred Benenson

This is called Mathwashing. When power and bias hide

Bias doesn't come from Al algorithms, it comes from people.

Black-box problem

The current generation of AI Systems are what we call **black-boxes**.

What can we do to solve this?

"We cannot outsource our responsibilities to machines." (Zeynep Tufekci)

Machine intelligence makes human morals more important.

Fairness

"An algorithm is fair if it makes predictions that do not favour or discriminate against certain individuals or groups based on sensitive characteristics."

Source: https://www.amazon.science/research-awards/success-stories/algorithmic-bias-and-fairness-in-machine-learning

Explainable and Interpretable Al

Explainability is not a new issue for AI systems. But it has grown along with the success and adoption of deep learning.

How does a model work?

What is driving decisions?

Key stakeholders

Data Scientist

- Understand the model
- De-bug it
- Improve its performance

Business Owner

- Understand the model
- Evaluate fit for purpose
- Agree to use

Model Risk

- Challenge the model
- Ensure its robustness
- Approve it

Source: Principles and Practice of Explainable Machine Learning (Vaishak and Ioannis, 2019)

Can I trust the model?

Regulator

Check its impact on consumers

٠

٠

Verify reliability

Consumer

- "What is the Impact on me?"
- "What actions can I take?"

Challenges XAI

- Lack of global explanation methods
- How to avoid **ground truth unjustification**?
- How can we better evaluate explanations?
- Can we do better explanations for **non-expert users**?
- How does fairness interact with interpretability?
- How can we build more robust interpretability methods?
- How to combine and deploy interpretable Machine Learning models?

Product Thinking approach

Thinking of AI as a product...

Who is your invention for? Who benefits from it?

This is a great time to consult with a UX (user experience) specialist and map out your application's users.

Is it ethical to proceed?

Just because you can do something, doesn't mean you should.

Think about the humans your creation impacts!

Who benefits and who might be harmed?

Dataset 2

Diversity of perspective matters!

Applied data science is a team sport that's highly interdisciplinary

Summary

01 TEC OF H

02 MATH CAN OBSCURE THE HUMAN ELEMENT AND GIVE AN ILLUSION OF OBJECTIVITY.

03 EVE BIAS

TECHNOLOGY IS NOT FREE OF HUMANS

EVERY SINGLE HUMAN IS BIASED.

Thank you!

@carlaprvieira carlavieira.dev

